Introduction

I have worked for over 35 years as an engineerfanithe last 22 years | have worked
designing modems and data communications systerdsvage and software. | have also
designed data acquisition and other electronicvisarel and software. In almost every case,
an integral part of the designs of these otheesystwas a data communications subsystem
that frequently used RS-232 or similar serial mdgo

| started designing software for Windows at the esdime that VB 2.0 was released. | had
looked at VB 1.0 but felt that it was not quite&dy for prime time,” although there had been
a lot of useful software written using VB 1.0.

As soon as | started using VB 2.0, | became a eggisitor to the CompuServe MSBASIC
forum. | found the MSBASIC forum to be a valuabtaurce for answers to questions and |
quickly became familiar with the expert programmiba frequented the forum. When | felt
competent to contribute to the online discourshdiso. An area that was insufficiently
covered was serial communications and, more spalifi the MSCOMM.VBX. Fortunately
| already had a background in serial communicataon modems (which generate more
guestions than any other subject in the area dédlsgrmmunications). So, | started writing
example code and answering questions online. Isansfied that my efforts were beneficial;
many correspondents sent me messages of thankgterdpositive feedback. | also felt that
| would like to do more. Microsoft has moved theéveloper tools onward with the release
of the various incarnations of Visual Studio .NEWhile serial communications may appear
to be less important with the emphasis on netwagrkind the Internet, it still has many
important applications.

Microsoft:

MVP Most Valuable
Professional

In early 1994, the Microsoft engineers in chargéhefMSBASIC forum activity recognized
my online assistance by nhaming me a Microsoft Deyed MVP (Most Valuable
Professional). The MVP program was started by b&oft as a way to recognize those
people who provided accurate and valuable onlitye teeother developers. The MVP
program was a way for Microsoft to say “Thanks” aoencourage future contributions from
the MVPs. Seéttp://mvp.support.microsoft.com/default.adpr more information

about the Microsoft MVP program.

| have continued my participation in the Microsiit/P program with Microsoft's move to
the Internet.

So, Why Did | Write This Book?

| found that I could never spend as much time enéia | wanted. And, | could not put as
much detail into responses as | would have likedequently, a simple response to a question
brings up many subsequent questions. One of thet fmemuent questions asked of me was,
“What book can be used to learn what you haverd@” There was none that | could find. |
do not think that | can kill all questions with $stone tome (puns and mixed metaphors are a
favorite pastime of mine) but it gives me a chatacget everything down in writing that |

think may be useful. It also has kept me out ofwife’s hair for several months.

A common complaint that | have seen is that theudwmntation on MSCOMM that is
furnished with Visual Basic is incomplete and baosden useless. Well, let me be charitable
and say that it is not as practical as | would, likat it does not cover most of the issues that
I'm tackling here. | also am able to furnish infation on commercial serial communications
products.

When Visual Studio 2002 and 2003 were developeathlsmmmunications support wast
included. Thus, resources were even more limited.

| have had plenty of help gathering information a@sburces for this book. Please see the
Acknowledgments section for a list of the people@wlave helped me out. If | make an error
conveying to you, either in fact or by implicatimamething that they have provided to me,
please let me know and | will try to rectify theoptem.

Please help me out by letting me know when you $ioehething that should be changed or
included.

What IsIn This Book

The working title for this book wa&n Engineer’s Guide to Practical Serial Communiocat
in Visual Basic The title has been changed but the approachimertfee same. | have
tackled the problem of serial communications asragineer would. That is, | have included
background information on serial communications dethils on how the various parts of a
serial communications system act and interacts Wyistems approach” should be useful to
engineers and non-engineers alike.

I have tried to include detailed information on thee of the Windows API (Application
Programming Interface) for serial communicatiohs, tise of the MSCOMM custom controls
that are furnished with VB Pro and Enterprise \@rsiand Visual Studio.NET, and
commercial serial communications add-ons. In #@oltito general-purpose serial
communications, | have included special purposarimétion on Alphanumeric Paging and a
variety of other specialized serial communicatitopscs.

WindowsCE devices are growing in popularity antditytand they present some unique
problems that need to be addressed.

| have expanded the discussion of checksum and &i0lation and have included working
example code.

New to the Fourth Edition is a discussion of vasiMirtual Serial port implementations,
including how some might be used by Visual BasimgPammers.

| have placed the discussion of XMCommCRC.ocx asbaated example programs in a
separate chapter. XMCommCRC.ocx is an ActiveX mdithat | wrote using VB6.
XMComm wraps the functionality of MSComm32.ocx autls XMODEM/Checksum and
XMODEM/CRC error-corrected file transfer capabilitit may be used freely in Visual
Basic, Excel, Access, Visio, LabView, or other eomiments that support ActiveX controls.
There is no license restriction on its use. Thes®code for XMCommCRC.ocx is the
starting point for this new chapter. There | dsits design and implementation. The
accompanying examples illustrate the use of the XM@CRC control.

| have devoted one full chapter to VB.NET, the \disBasic portion of Visual Studio.NET.
VB.NET examples cover the same general subjectsatkadn other chapters for earlier
versions of Visual Basic. Several of these exampked the Upgrade Wizard that is part of
the VB.NET development environment. The code gererby the Upgrade Wizard may not
be as intuitive as one might hope plus it sometineegls modification to work well.
However, the Wizard does a fair job. These examaliew me to illustrate some of the built-
in functions that the .NET framework offers to makdeveloper’s life more productive. This
productivity comes at a cost +iscuss that, too.

With the release of Visual Studio 2005 serial comizations is included for the first time.
The System.l0.Ports namespace provides this suppbeve added detailed information on
the use of this namespace, along with example progithat provide practical starting points
for its use. | developed a native VB .NET class #imcapsulated the Windows
communications APIs and the FileStream and othEfl.Wethods for use with Visual Studio
2002 and Visual Studio 2003. This class was ir8thedition, and still is valid for those
development environments, which had no built-inadesupport. However, to make space for
Visual Studio 2005 in this edition, | have moved #ssociated text to the CD ROM.

The 3° Edition of this book included a chapter coveriega communications using eVB for
Windows CE and the Pocket PC. However, with tiease of Visual Studio 2003, Microsoft
moved practical application development to the Cachfgramework. The Compact
Framework, like the desktop .NET Framework, didinotude serial communications, so it
was left to developers like me to create that fiomatlity. The eVB chapter has been replaced
by a Compact Framework chapter in the Fourth EliticAll of the text in the "8 Edition
Chapter 8 is retained on the CD ROM.

Occasionally, | write C# code. Some C# will crésp the examples on the CD ROM.
While I'd like to cover C# programming in more détawill have to leave that to another
time.

Included on the CD ROM are code examples to ilustas many of the things that | talk
about as possible. To use this example code, yibneed to have installed the version of
Visual Basic that is specified along with any castoontrols that are mentioned. But, often,
the example code will be portable to other versiigB and other custom controls. The
example programs are designed as applets. Thestdh,stands alone and implements one or
more features that are discussed in the book. Nbtie applets depends on another,
although there is, naturally enough, some overagetails.

| have included a folder on the CD ROM for X10 coomitations. These controls, examples,
and information are freeware, downloaded from ttierhet. | do not have the space to go
into any detail on this subject in the book.

The CD ROM that accompanies the book includes custontrols and products from a
variety of vendors. Please see the documentdiatraccompanies each of these sets of
software for ordering or registration informatioBome of these vendors will offer readers of
this book discounted software or other benefigee the README or similar file in each
associated folder on the CD ROM for details oneheffers.

| have used thisicon in the text where | want you to refer tothe CD ROM for a
complete program listing or for infor mation and services directly from the publisher of
the product being discussed.

Also included on the CD ROM are several freeward ©and utility programs.

I have included as much information on debuggirrgaseommunications problems, both
hardware and software, as | can. Debugging igaliand requires an understanding of the
interaction of several disparate elements. Thiesaents are the software that you have
designed, the computers used and any multitaskedgtihey must do, and any modems that
are used. The tools that | mention are invalubbtehere is no substitute for uncommon
sense and for a methodical approach.

An appendix is devoted to resources. There areeadds, both mail and online (if available)
and phone and fax numbers for all of the compahigsare mentioned. A short description
of the products that they offer, that may be valeigis included. | have included as many
other products as | could find, even if | do natatiss them explicitly in the book. If any
product that should be included is not, let me know

OK, What IsNot In The Book?

I have included nothing on serial communicatiorsstiae Internet. This is a subject that
should have a book devoted to it. There are sksach books available and there will be
many more coming. | have also decided NOT to uelthe use of fax add-ons or Microsoft
Exchange. Time and resources have left this abjec for the future.

| have included information on the features thatiacluded with the MSCOMM32.0CX that
is furnished with VB 5/6 and now VB .NET. Howeveome of the new features of VB .NET
(and there are many that will be useful) will netdiscussed in detail.

| do not try to cover synchronous serial commumices. Windows has no built-in support

for synchronous communications while Windows supfmrasynchronous communications
is substantial. Synchronous hardware is uncomnubit is available. So, if this is your

need, you will have to do some research or get smmsultation in this very specialized area.
However, one product that is included in Chaptéseé LUCA) includes synchronous
communications support.

I do not cover the control of PLCs (ProgrammablgitdControllers). It is possible to
implement the more common PLC communications prisogsing MSCOMM or some other
add-on. But perhaps a more practical solution isse one of the custom controls designed
specifically for this purpose. | have listed soofithem in the Resources appendix. Also,
refer to the LUCA product description in Chapteanid on the CD ROM. LUCA includes
support for several PLC related protocols. Attthee of this writing, | had plans to include a
variety of commercial add-ons that support PLC camications in the Resources portion of
the CD ROM.

The Universal Serial Bus (USB) is not discusse@&BUas its name suggests, is a bus
designed to provide "Plug and Play" capability ¢sipheral devices. It requires a device
driver for supported devices on the bus, similgoriater, network and video adapters, or
other conventional PC hardware that may be usedikéJconventional hardware buses like
PCI, USB devices are "daisy-chained" together usperial serial cables. So, while the
name says "serial", that is a physical descriptibthe way that it connects. In other practical
ways, the "bus" part of the name is what is impdrtehile serial is not. There are USB serial
devices, however. These provide a way to addlgmsits to a PC without opening the box
and inserting a card. Use of these serial pottseisame as those on an internal card (with
minor caveats that will be discussed in the Debugghapter). Appendix A provides a list of
pertinent vendors. Jan Axelson’s bdd&B Completdhird Edition, Everything You Need to
Develop Custom USB PeripherdlS$SBN 1931448027) is a good source of informaton
USB. It has example code written in Visual Basid &B .NET.

Bluetooth is a serial communications technology thight be of interest. | do not attempt to
cover this in detail. Why not? First, often idiesigned for networking computers and
compatible devices. It may not be oriented toward serial communications but may use an
extensive protocol stack; this depends on the bBluatooth device with which you are
communicating. There are some Bluetooth devicassritay be treated as standard serial
ports (an example is most GPS receivers that pecaiBluetooth interface). Second, in
general, Bluetooth will not use a conventionalaguort, though there are serial to Bluetooth
adapters. See the Resources Appendix for Bluetestiurces. Last, | have not had the need
to develop any Bluetooth enabled applicationshsoet are more things that | do not know,
than there are things that | do know about it. r€hie an old saying, “Those who can, do.
Those who cannot, teach.” While there is some Ismah in this statement, | prefer to admit
the limitation.

Most of the discussions in the book and all ofdbde samples on the CD ROM use the
North American (English) versions of Windows anddeams designed for North American
use. Users in other areas of the world may fifiididinces that invalidate one or more things
that are covered. Unfortunately, this is a fadifef Microsoft TAPI attempts to alleviate

this problem and to date it has been only somesinatessful.

Parts of earlier Editions of the book have beenedae the CD ROM to make space for new
text. These cover a variety of topics that malyIst of use, such as the 16-bit Windows
serial communications API, eVB, and various comroations products that may still be
present in legacy systems. Refer to the CD ROME#itibn and 3rdEdition folders for .doc
files that contain the deleted text.

If I learn something new and useful or if you let kmow of something that | can mention,
specifically, about serial communications in otharts of the world, | will add it to the next
revision of this book. An important aspect of thaok will be the continuous upgrades and
improvements to the text and software.

How to Use This Book

This is not a “Dummies” book. | have no quarrethathat highly successful genre. But | do
not think that serial communications is a subjectriovices. | have assumed that you know
how to program in Visual Basic. | do not go inmahto edit code, how to place and use
standard VB controls, or any details of Ul (Useetface) design, except where those affect
the subject at hand, serial communications.

| do not attempt to teach you a programming styl®ase programming techniques that are
specifically designed to encourage code reusabilityou want to learn how to program,
how to design class modules, or to design a Uderfate, see the Resources appendix.
There are several books listed there that covesethabjects.

| do not assume that you have done any serial canmations programming or that you have
an intimate familiarity with modems or other segammunications devices. | will ask you to
read the manuals that are furnished with the conications device that you are going to use.
As painful as the fact may be, there is no betterce for accurate information than that
furnished by the manufacturer.

| will offer opinions on programming techniques aquproaches to problem solving. These
opinions are my own and contrary opinions may wrist. | will offer them to you because |
have found them to be valuable to me. See Coromntind Style for more information.

A Quick Preview of the Book and CD ROM Content

Chapter 1 covers serial communications, Windows, the PC hardvhat is used, and flow-
control. Error-corrected file transfers and terahiemulations are covered next.

Chapter 2 covers modems and serial standards. More tharf #he enost common questions
about modems are answered.

Serial hardware standards are discussed. Vari8u83 null-modems are illustrated. RS-
422 and RS-485 are discussed, with code fragmeesepted for RS-485.

| have added a new section to this chapter for @metailed discussion of checksum and
CRC calculation in Visual Basic. Several examplesincluded.

Chapter 3 discusses the details of the Windows communicatiiis including the
Telephony API.

Chapter 4 discusses the MSCOMM custom control. The versfon¥B 2.0 through VB 6.0
are covered along with programming concepts for VBE&les for earlier versions of
Visual Basic will be found on the CD ROM. This pher is where we start to see some
practical program examples to illustrate the useISCOMM.

There is a program included called DMM/LOGGER. sTpiogram illustrates how to use
MSCOMM to communicate with a (DVM) Digital Volt Met. The ideas that are conveyed
with this program include how to implement a cominations protocol. In this case, the
protocol has been designed by an electronic ingmirmanufacturer.

Two MSCOMM programs implement Global Positioningell#e receiver interfaces. These
illustrate implementation of a serial protocol edINMEA-0183. One receiver program
synchronizes your computer to the GPS receiver éintedate and provides highly accurate
location (latitude and longitude). The other dexthore NMEA data such as altitude, speed
over the ground and the number of satellites im\bet does not synchronize computer time.

A simple magstripe and barcode programs each akéded to illustrate the use of magstripe,
barcode and similar scanning devices.

Several other programs (applets) are includedustibite various points. See the CD ROM
for example programs that did not make it intothd. Chapter 4lsocovers
XMCommCRC.ocx. XMComm is an ActiveX control writtén Visual Basic 6.0 that adds
XMODEM/checksumand CRC error checked file transfers to the underhgagability of
MSComm32.ocx. It can be used in a variety of dgwelent environments that support
ActiveX controls (the only exception is browsersemit is not appropriate to host an
ActiveX control that accesses client-side hardveareh as the serial port). The source code
for XMComm illustrates the design of the ActiveXntml. The XMTerm, Remote/Host and
Flashlite example code illustrate the use of XMComractual VB applications.

Chapter 5 explores some of the new .NET territory. | provider example programs that
illustrate the opportunities and issues in VisuasiB.NET. | have ported three VB6
programs to .NET. One is the XMTermNET programahhiises the XMCommCRC.ocx
ActiveX control for terminal emulation and errorettked file transfer. The second is a GPS
program that uses native .NET methods for convgitiiC (Universal Coordinated Time) to
local time and date information, and which autooaly compensates for Daylight Savings
time. The third program is a straightforward pafrt/BTerm, using MSComm32.0cx, to
VB.NET. These programs illustrate the use of .NEOM Interoperability. That is, Visual
Basic .NET and other .NET framework languages alfjow to continue to use ActiveX
controls and other ActiveX objects in .NET programs

I have included one native VB.NET program thatsttates the .NET built-in support for
serial communications using the FileStream classfortunately, FileStream does not furnish
all of the “hooks” needed for a complete impleméaotaof a serial communications object.
We have to use unmanaged code from the Windows comcations API to do some of the
heavy lifting. Thus, some of this code will lookitg a bit like some of the equivalent code in
Chapter 6. However, .NET does offer some real pdlagt | mention. Method overloading

is something new to VB programmers. It providesnaportant tool that we will use.

MS.NET is an evolving program for Microsoft. Deopérs will have to add new techniques
to their toolset in order to work in this area.sial Studio 2005 adds the System.lO.Ports
namespace. This furnishes a native serial comratioits class. | discuss this and provide
examples, including XMComNET (XMODEM for .NET).

Chapter 6 goes into the Windows 32-bit serial communicatiéfs. 16-bit API information
and examples have been moved to the CD ROM.

Next is TAPI (the Telephony API). A simple Windo®5/98 dialer is shown plus other uses
and limitations of TAPI are discussed.

Chapter 7 is an overview of a variety of commercial commutimas add-ons for Visual
Basic. Sax Comm Obijects, Greenleaf CommX, MagnaGaommTools, LUCA, amComm,
SuperComm, and Crystal CrystalCOMM are discussed.

One example program is provided. This program GsesComm Objects to create a
program that provides a combination Host (BBS) Redote (client) communications
program that implements automatic file transférhis program illustrates TAPI modem
configuration, dialing, post-connection user vdiiola, and automatic file transfers using the
Zmodem file transfer protocol.

Previous editions of this book provided examplegpams that used PDQComm from
Progress/Crescent Software. PDQComm is no longelahle. However, the example code
and accompanying text has been placed on the CD RQi PDQComm folder.

Chapter 8 discusses paging. Numeric paging is shown arnitations are discussed.

Alphanumeric paging (AlphaPaging) is the real fart¢his chapter. One commercial Visual
Basic add-on is discussed: the Logisoft Page/Xva&t control.

A program is included that uses Ron Tanner’s PoageDLLs (the DLLs are included on
the CD ROM) and illustrates the AlphaPaging procédsis DLL is no longer available, so
this has been moved to the CD ROM.

Chapter 9 covers serial communications using VB .NET andutsaial Studio 2003
Compact Framework 1.x. Serial Programming for "isstudio 2005 and the Compact
Framework 2 is equivalent to that in Chapter 5, am@&xample is included on the CD ROM.

The 3% Edition of the book included eVB for Windows CEdatliscussed actual coding using
the ceComm control, various design, development,cetugging issues, along with
performance considerations in a WindowsCE hand-bekmbedded PC environment. The
accompanying eVBTerm and ceVoltmeter examples sed to illustrate this area. This text
has been moved to the CD ROM.

Chapter 10 examines the use of direct I/0 port manipulatiodadahings that cannot be done
using more conventional APl methods. This requines you understand the physical I/O
structure of your PC. Four methods are discus3ée first uses VBASM.DLL (included) to
access PC 1/0O ports on a system using a 16-bitoreas Visual Basic. The second uses
WIN95IO.DLL to do the same using a 32-bit versidrv/sual Basic.

Two programs are included that monitor the stafube Carrier Detect bit in the UART.
This allows a Visual Basic program to record thtaltoonnect time of another Windows
program. A third program is used to overcome tlsimum speed limitation (19.2k bps) of
MSCOMM32.0CX furnished with VB 4.0. Included areenples that are mainly oriented
toward Internet applications but also use the Wiveland RAS APIs to do some of the
actions listed.

Scientific Software Tools, Inc. DriverLINX Porti&ware is a freeware DLL and kernel
mode driver that permits direct access to stantd@gorts under Windows 9x/Me and
Windows NT/2K/XP. ltis included on the CD ROM.nA&xample program is provided that
allows a program to force DTR false, thus causimgoalem to disconnect on a comm port
that has been opened by another application. Anakample illustrates sending data
directly to the serial port UART, which bypasses the Windsessal API. While not
everyone's “cup of tea,” these examples may helyesa problem that otherwise is
intractable.

Chapter 11 is important. Debugging communications applicaioan be difficult. Here are
discussed both hardware and software methods fargigng your applications.

Techniques for optimizing your code and tips ta@ase its reliability are presented. The use
and utility of telephone line simulators are disea Last, debugging serial port hardware
problems are discussed.

Appendix A is a list of resources. Contact information isyided for all of the products that
were mentioned in the book. Lots of additionalteshinformation is provided for companies
that offer products or services that may be udamitithat could not be discussed in detail.

Appendix B is a VT100 terminal emulator written using VB6. ri&a editions of the book
included 16-bit VB2 code (still on the CD ROM iret@ndEdition folder).

Appendix C is the complete NMEA-0183 protocol used in the G&iver program.
Appendix D details the 1/0O port description of 8250 and 165560MARTS.

Appendix E is a chart of the ASCII character set.

Appendix F is the basic AT modem command set.

Appendix G isa description of the Telocator Alphanumeric paging protocol.

Visual Basic and Windows Versions

Visual Basic is now in its ninth version and Windoim its umpteenth version. I'll discuss
some of the issues with various versions here mmaoire detail in other sections of the book.

Windows 3.0 was furnished with a device driver (CRANDRV) that implemented interrupt
driven serial communications. This and later dvare “virtual device drivers.” That is, they
provide a controlled interface to the services fted to support serial communications and
isolate the application from the actual hardwarbe Windows 3.0 COMM.DRY did not
provide support for 16550 AF UARTSs (discussed lagerit was not reliable at speeds in
excess of 19200 bps.

Windows 3.1 was furnished with an improved verssdoCOMM.DRYV. It provided built-in
support for 16550 AF UARTS, an improved notificatischeme, and was capable of reliable
communications up to 57600 bps.

VB 1.0 had no built-in support for serial communioas. If you needed serial
communications, you had to rely on the Windows APhis was a fairly complex process, as
can be seen from the API chapter in this book. wéBild work with Windows 3.x in either
Standard or Enhanced mode.

It would be a mistake to do any serial communicetionder Standard mode Windows. True
multitasking is needed to avoid loss of data wheeréal communications application runs in
the background. So, do not try to write any segiserial communications application that
runs under Windows 3.x Standard mode.

There were a few DLLs (Dynamic Link Libraries) theatcapsulated the API but these were
not too common nor did they work too well.

It is possible to encapsulate the Windows commuiaica API functions in a VBX or OCX
and to make those functions easily available topv@rammers. VB 2.0 Professional
Edition was furnished with MSCOMM.VBX that providedsimplified communications
interface. MSCOMM.VBX also provided event drivesnemunications. Event driven comm
is desirable because it means that communicat@mrtses can be written in an analogous
way to the routines that are associated with oitieeevents, e.g., CommandButton Click
events.

VB 2.0 Standard Edition, and later Standard Ed#iohVisual Basic, had no built-in support
for serial communications. You could use the Wind@\P1 functions or purchase a
commercial communications add-on.

At the time of the VB 2.0 release, commercial vasdarted to offer VBXs that
encapsulated the communications APl and that affeteer enhancements. Some of these
enhancements were built-in error-checked file fienssand terminal emulation.

VB 3.0 followed VB 2.0 by only six months. VB 3R¥ofessional Edition was also furnished
with MSCOMM.VBX. The new MSCOMM.VBX used a featunéthe Windows 3.1 API

that permitted communications event notificatiorttaf control. However, it was soon found
(within a few days!) that this event notificatioidhot work reliably at speeds higher than
9600 bps. A new version of MSCOMM was releasedéeal with this fault. See the section
on VB 3.0 and MSCOMM for more details on this peghl

Windows for Workgroups 3.11 was released in thimeséime frame. WFW 3.11 introduced
a new problem. The communications driver (COMM.DRNat was furnished with WFW
3.11 had a fault of its own. It did not propeudientify 16550 AF UARTSs. This meant that it
would attempt to enable the FIFO (First In First ®uffer) on the UART when, in fact, that
FIFO did not exist. This caused unreliable proicessf receive data. There were several
solutions for this problem. The first involved taging COMM.DRV with the COMM.DRV
from Windows 3.1. The second solution involvediadithe SYSTEM.INI file to disable the
FIFO for any port that was known to not have a T6B5 UART. The third possibility was
to replace COMM.DRV with a commercial replacemevibu can see the Resources
appendix for TURBOCOM.DRYV from Pacific CommWarehig driver is my preference for
solving this problem because it works and becatiseai higher-performance driver than the
Microsoft-furnished COMM.DRV. Another such driviesrHiCom/9 from Cherry Hill
Software Corporation.

Windows NT (later Windows 2K and XP) and Windows(&8er Windows 98 and Me) are
32-bit operating systems. These various operatystems improved serial port handling with
each new version (with a few warts here and thefé&)P| became viable only under these
OS’s, and serial port drivers have been updatéapoove “Plug and Play” operation with a
variety of serial devices. The chapter on Debuggwil discuss some of the problems that
may be encountered under these OS'’s.

VB 4.0 introduced several new features and isstiéss version of VB came with two
development environments. VB 4.0/16 was for Wind@ax (although, of course, 32-bit
versions of Windows would also run VB 4.0/16 pragsa and VB 4.0/32 was for Windows
95/98 and Windows NT 3.51 or later. Accompanying Professional and Enterprise
Editions of VB 4.0 was MSCOMM16.0CX for use with \B0/16 and MSCOMM32.0CX
for use with VB 4.0/32. From the standpoint of Y& programmer, OCXs (OLE custom
controls, where OLE stands for Object Linking amdidedding) were just like the earlier
VBXs. These new controls offered no new featurgshey did cause some new problems
that were not seen in earlier versions. See ttioseon VB 4.0 and MSCOMM for more
specific details. To solve some of the problenasy mersions of both controls were released
on 1/26/96. These updated controls were parteotittadvertised VB 4.0a release of VB 4.0.

VB 4.0 introduced a new issue with respect to himkata and the use of the String data type
for Binary data. See the section on VB 4.0 and @81/ for an extended discussion on this
area of concern. | discuss the best solutionHigrgotential problem also.

VB 5.0, VB 6.0, and VB.NET are 32-bit developmenticonments, only. A new version of
MSCOMM32.0CX was furnished with VB 6.0. The VB5daWB6 versions had some
features that were new and very useful. | go detail on some of these in the VB 5.0/VB
6.0 section. The VB 6.0 version of MSCOMM32.0CXedamot offer any features that were
not in VB 5.0. So, discussion of VB 6.0 will bensbined with that for VB 5.0.

The Visual Studio .NET 2002 and 2003 Framework®duce many new functions that are
designed to improve programmer productivity. Asname implies, it is largely oriented to
development for the still emerging Internet-cenaiplications. Many of the new features
offer value— but not too much that is directly applicable ta@ecommunications. The GPS
example application that is included in the VB.N&Tapter illustrates the use of a .NET built-
in library to perform calculations involving Daylig Savings time. The XMTermNET
application illustrates the use of COM interopeligbiith the XMCommCRC control and

the use of ActiveX controls in .NET. A similar VBTm example, using MSComma32, also is
provided on the CD ROM.

The NetTerm example illustrates.NET methods forlamgenting serial communications
without using an ActiveX controls. Instead it uties .NET FileStream class to read and
write serial data using a communications port ki@t been opened using Platform Invoke
(P/Invoke) to call a variety of underlying Window®ls. The DesktopSeriallO dll that |
provide on the CD ROM is an improvement on theshri&ues.

Visual Studio .NET 2003 Professional and higheitiads include the Compact Framework
for PocketPC 2000 and higher devices, and othed@iis CE systems using WinCE 4.x and
higher. The Compact Framework does not providesaniyal communications support, so |
provide a complete, practical, serial communicatiolass (DLL). The source code is
included, so any modifications that are vital fapeecific project may be made. | also furnish
example code that illustrates the use of this class

Visual Studio .NET 2005 includes native serial caiminations. Explanation and examples
are included. See the CD ROM for Compact Framew@dlexamples for the Pocket PC.

Conventionsand Style

There are so many decisions to make when you aititeok. One of the most important is
how much humor to display? | have found (many, yrtames) that things that amuse me are
not even slightly funny to others. So, be foreveakn|If | say something stupid, write it off to
my strange world-view. If you give me the benefithe doubt, | will not have to work so
hard.

The word “data” is a plural noun. However, comnusage assigns a singular meaning to the
word. Grammar dictates that the plural form ofabvshould accompany plural subjects in a
sentence. The choice made in this book is toiodtommon usage, rather than the
grammatically correct form. So, the word data Wwélused in sentences with a singular form
of the verb.

Microsoft and other knowledgeable authorities ssgtfeat Hungarian notation should be
used for variable and objects. For example, aB@ximight be named txtReceiveData. A
string variable might be named sBuffer, and angetesariable might be named nTotalCount
(or iTotalCount, depending on whom you ask).

The rationale behind these naming conventionsaisdhe can tell from the name what the
variable type is or what kind of object is namddis can simplify debugging of your own
code, simplify maintenance, and make the code me@@able by a casual viewer. All of
these arguments, and perhaps others, are valid.

However, | often do not use Hungarian notatiotry ko use descriptive names for my
variables and objects. Habits of twenty yearsoaare hard to break and the extra prefixed
characters that describe type or function are atiral to me. | apologize in advance for this
failure and hope that it will not be too greatraitation. | do not use the default property of
controls for an assignment. If one were to dasadability would be enhanced by using
Hungarian notation. However, statements like Rexd2ata.SelText = Buffer is rather
unambiguous. | do use Hungarian-like notationpfdvate variables inside class modules and
at various other times — | have tended toward \&@tpas the years have gone on. This is my
own idiosyncrasy. It reminds me of their use altmlAzs me to use similarly named property
Let and Get names.

Occasionally, | use a variable type suffix. Foample, | might use Ret% to designate an
integer or Buffer$ to designate a string. Whertingicode, | do this on an ad hoc basis (and
have abandoned it in recent years). | suggestthatlecide on your own coding style or use
the standard that your organization has adoptemlveier, these suffixes are not supported in
VB.NET. For that reason, most of the code thatdeen modified for the"&nd later

editions of this book removes these suffixes.

Some of the code examples in this book use Chr${i8)Carriage Return character, instead
of the equivalent VB intrinsic constant vbCr. Treason is that versions of Visual Basic
earlier than 5.0 did not provide this and othetthaiintrinsic constants. | like to use vbCr
and vbCrLf when possible. However, you may sdeeeiform in the book text. VB.NET
changes the syntax for these constants, so cottewfor .NET may use syntax like
ControlChars.Cr for the Carriage Return charactéB..NET still supports the VB Constants
vbCr and others, so you can choose the syntaythaprefer. See the .NET Help system for
more information.

| always enable Option Explicit (Require Variabledlaration) and | suggest that you do so,
too. | explicitly type variables. If a variableust be converted from one type to another, |
use an explicit conversion and do not use any fofrrrariant conversion.

Variants and conversion of types to variants catrdagblesome. Variant variables require
more memory, are slower to access, and their useasse unpredictable errors. VB.NET no
longer supports Variant data types. This reinfertte idea that Variants should not be used.
VB.NET adds a compiler directive called “Optioni&ti’ Option Strict restricts implicit data
type conversions to onkyideningconversions. This explicitly disallows any datpd
conversions in which data loss would occur andamyersion between numeric types and
strings. | suggest that you employ Option Striot @ means that your code might be more
verbose. However, the added safety is worth tfotef

| use Public or global variables only when they maknse. Artificial data hiding that
requires extra parameter passing can make code¢emairte easier but, contrary to some
popular opinion, it does not make code more “modul&lowever, the use of global variables
can cause side effects. So it is best to limirthge as much as is practical.

The sample code that is furnished with this boaksi€ompact and concise as | could make it,
within reason. | have kept the user interfaceimple as possible. | have limited the number
of forms any project uses to the minimum numbetr Wauld work while providing the
functionality that | desire.

One of the decisions that | had to make was whealiche sample apps that | furnished. |
decided to call them applets to indicate that #weycomplete but that their functionality is
limited. | hope this decision will not cause thearbe confused with the applets that
Microsoft furnishes with various operating systeansl programming environments.

In some of the simpler programs, | hard-code soam@bles that a production application
design would allow the user to configure. For epbamthe NIST Automated Time Program
and RingDetect programs are hard-coded to Com1h &ahese programs run minimized,
without normal user interface.

A production application will most often have a usgerface that will allow the user to
configure all critical variables. Such a produntapplication will persist configuration
variables in INI files, the Registry, or in a datgb. These configuration parameters will be
read and used when the program is run subsequebglyeral of the programs in this book
illustrate that technique while others do not hthie feature.

When | discuss step-by-step approaches to proldéring, usually | will do one of two

things. | may present “pseudo code.” This is @eclike expression of the steps that might be
used. Itis not real code. The other approachltiwél use is to present code, based on
MSCOMM, which could be compiled. Pseudo code alore to present a concept without
getting into the issue of making certain that thetax is exactly correct. While real code is
concrete, it takes more work to make certain thatli actually work as described. If |

present code based on MSCOMM, it should work unghdrwith all commercial
communications custom controls. However, if yoa aDLL-based product, you may have
to make some changes in syntax but the logic itéirobe the same.

When | had a choice about placing subroutines etfans in a form or in a .BAS module,
and if I did not need a .BAS module for other reesd placed the code in the form. The
reason for this decision is twofold. First, feViitgs are required to make a functional
program, thus distribution of the source code fera Second, it is easier to view code on
screen and on the printed page when associateddgu®s are close together.

A good programming technique is to use numeric @ons with easy-to-understand names.
Visual Basic includes CONSTANT.TXT with a numbertbése pre-defined constants. For
example, an OnComm receive data event can be tiestading Const
MSCOMM_EV_RECEIVE = 2. If MSCOMM1.CommEvent = MSGAM_EV_RECEIVE
Then (do something). By all means, use constantsatke your code easier to read and
maintain.

When later versions of Visual Basic were introdydbd name of some constants changed but
not their meaning or value. For example, the MS@o@ommEvent constant that indicates
receipt of data in an OnComm event is comEvRecd®v®&SComm32.0CX (version 5 and
later) while it was called MSCOMM_EV_RECEIVE in &ar versions. The actual value, 2,
was retained. You may see either variation ofdtemstants in the example code furnished
with the book.

Public Enums extend the concept of providing edsilsrpreted constants, such as those used
by MSCOMM and all of the classes in the .NET Frameuw

Simply said, some of my code examples have no.clBgghat | mean that many of my
examples do not use class modules. Classes entaaiea@eusability and maintenance.
However, the reason that they enhance reusabildynaaintenance is that they can obscure
details of the underlying design and implementatidhese details are exactly what | want to
emphasize in this book. However, | include a nundiexamples that do use class modules.
One notable example is the source code for thev@¥tcustom control XMComm. ActiveX
projects must use class modules for their pubtierfaces so they are a natural to illustrate
modular, object-oriented design. Visual Studio TNEtruly object-oriented. Use class
modules when programming for .NET. This is a reltand inevitable element of
design/implementation. When you create your owriegipons, | encourage you to use
classes where appropriate. The Resources appisidia couple of books that discuss this in
detail.

| should make one comment on the typographical eotions that | have adopted. | have
decided to paste code from my Visual Basic projettsthe examples sections of the book.
Some of the sample code "wraps" from one linerte {d the next. If it is typed in exactly as
it appears, it will not run in 16-bit versions oBY | could format it with artificial underscore
characters; the line-continuation character thased in VB 4.0 and later versions, but that is
not available in earlier versions. The editingidien has been made to add underscores to
indicate a line-continuation in code but not in ecoemts, regardless of the version of VB in
use.

On the CD ROM that accompanies th& 2, and 4" Editions of this book, | have included a
number of example programs and other files thahatelescribed in the text. This was done
in order to keep the book as affordable as possibfave included a text file that
accompanies each of the extra examples that gishera explanation of their use and utility.
I hope that you find them to be useful. Severahete have been furnished by readers and
are included with their approval. Here are somtheftopics that are included in this
supplementary set of files:

* ShareCom. An ActiveX EXE (OLE Server) that allows a singlerial port to be shared
between several Client applications.

RASConnect. A simple VB/32 project similar to CDMonitor inn@pter 8. The
difference is that it uses APl methods and is khito DUN or RAS modem connections.

RASHangup. VB/32 code similar to the Hangup programs inlihek. This code will
only work with RAS connections. However, it do@d require an add-on DLL.

GPS4AVB3, GPAVBA4, and GPS4VB5-6. GPS projects that further illustrate decoding
NMEA-0183 sentences. Included are displays of Ersial Time, Latitude, Longitude,
Speed, and Course over the ground, Altitude, atellBas in use.

CommProtocol. An example of a simple communications protobat tmight be
appropriate for a dedicated application. This sbprotocol might be appropriate for
controlling a device or devices on a dedicatechbastwork where you control the
software implementation for all devices. For exnthis might be an RS-485 network
that communicates with embedded controllers. if go not have to adhere to any
specific standard protocol, this example shows twimplement one that has several
desirable features.

Comm Spy. A project written by Leon Kenisom, student in the Computer Engineering
Technology programs at New Hampshire Technicaltiiist See the accompanying files
for more information

TapiClass. A set of class modules, and an example VB5 ptadfeat substitutes class
objects for Crescent's PDQTapi. TapiClass wagewripy Will Fookes. These class
modules improve on certain characteristics of PDg)Tahese class modules are
designed to be used with PDQComm.

XMODEM.TXT. This file describes the XMODEM and Ymodem ercbecked file
transfer protocols.

9BitData. A short discussion of how to tackle the 9-bitadaroblem (PC serial port
hardware supports data bits up to 8).

Access. Several Access databases that employ the NETCaerrto add serial
communications.

AppendBinaryArrays. A project that illustrates how to append bindaya in arrays, in
a way similar to the way one string might be apgehth another.

ASP. lllustrates the use of the NETComm.ocx seriahcwinications ActiveX control in
a simple web client (browser) application.

CreatePacketSend. A simple communications protocol for a spec#fezial hardware
system (laser table positioner).

Excel. Use of NETComm.ocx to add serial communicationSxoel worksheets.
FileCompression. Various file compression methods, including ZIP.
FindTAPIModem. Use TAPI to identify connected modems.

IntelToM otorols. Convert Intel floating-point values to Motoroladliing-point.

Scales. VB and VBA examples that interface with variouslesgindustrial weighing
devices).

WindowsM obile5. Compact Framework code for Visual Studio 2005.

GSM INTERFACE SPECIFICATION. Cellnet's Short Message Service Centre
(SMSC) TAP interface provides external companigs e facility to submit short
messages of up to 160 characters to GSM mobileecgbbss and subsequently to
determine the status of those messages. | hawsladfblder specifically for thé“and
later Editions that have additional files, foldargl utilities. Here are some of these:

Zmodem.txt. This file contains a description of the Zmodele transfer protocol. It
could be used to help a reader implement this podbtoHowever, anyone really
interested in this should consider the commentsltimake on this subject in the chapter
that deals with file transfer protocols

Breakout is a complete setup program for a utility thaavé written. It uses direct port
I/O to read the serial port UART modem control amadem status registers. The
resultant data is displayed both as a state irditésimilar to the LEDs on a breakout
box) and as a time-domain logic scope display efstatus of the RTS, DTR, CTS, DSR,
CXD, and RI lines of the serial port. The Breakprdgram works with all 32-bit
versions of Windows (9x/Me and Windows NT/2K/XF§ee the README file that is
included for a complete description.

SDA322 contains source code for two projects that worththe B&B Electronics (see
Appendix A) SDA line of serial data acquisition nubes. One project is an ActiveX
control that provides an easy way to interfacénésé modules for PC-based applications.
The other is an ActiveX EXE that provides a similgerface that might be called from a
Visual Interdev (ASP) or equivalent applicationtat the same SDA data can be
accessed by a browser via the Internet.

mComm contains a class module that encapsulates MSComm32The unusual
aspect to this code is that it allows MSComm taibedwithout the need to place an
instance of MSComm on a form. | have had lotseafide ask for this (though, | admit, |
have never found a need to do this).

mCommTLB is a class module that encapsulates MSComm32.eexasove), but that
uses a Type Library implementation of the Clasafarikto eliminate licensing issues seen
when using MSComm without a form.

CalculateEvenParity illustrates parity calculation in code.

ConversionRoutinesillustrates numeric conversions that may be needwezh dealing
with external systems.

EnumPorts enumerates installed hardware ports. These indadal, parallel, and
network ports.

SendMail is an illustration of various network email funet® This code was written by
Monte Hansen.

SimpleM API is an illustration of MAPI written by Michael Kapia

X10 contains information and examples covering the {pxil0 home
networking/control system.

NETComm is the source code form an ActiveX control thatpgréghe functionality of
MSComm32.0cx, so that it may be used with on lieenestrictions in Visual Studio

.NET, Access, Excel, Visio, or other ActiveX clisnt Simple Access database and Excel
examples are included. NETTerm is a terminal exartiat illustrates using
NETComm.ocx in VB .NET.

VT100 is a VB6 terminal emulation that employs MSComm38&.0

e« VBTerm.net is a port of the VBTerm example to .NET. Thistpged the Upgrade
Wizard, though | made a few manual changes.

» DesktopSeriall O provides a simple but powerful serial object fosMal Studio
2002/2003 (located in the Chapter 5 folder).

e XMCommNET is the XMODEM file transfer protocol implementedngscalls to the
Windows serial APl and is based on the serial ¢god@esktopSeriallO (located in the
Chapter 5 folder).

e VirtualSerialPort and DataM onitor. This is a utility that | wrote to use a pair oftuial
serial portsand a hardware serial port to facilitate testing andudgying of serial
applications. Find it in the Serial Communicatiétreducts folder under
HardAndSoftware on the CD ROM.

If there is a feature that you want to use in yapplication that is not implemented in one of
the programs in this book, it may be in anothew, |80k around.

Acknowledgments

I have had a number of people who have added cenadity to the technical content of this
book. | would like to thank them all, in no pactiar order.

Daniel Appleman provided the original code for ##bit Windows API chapter. The
API32Term program appeared first in his bdbtkual Basic Programmer’s Guide to the
Win32 AP] ZD Press. | highly recommend his book for anyahe needs to program using
the API. This book follows the popular 16-bit viersVisual Basic Programmer’s Guide to
the Windows ARIZD Press. | took the liberty to modify the pragrto match my
preferences and prejudices but | appreciate thevledlge that Dan has shared with the

VB community.

To compile a practical application that incorposdite transfers or emulation, you may want
to purchase a commercial communications add-onurber of such products are described
in the book. Any of these might be used, with appiate modification of the code that |
have furnished, which rely on Sax Comm Objectste®these modifications will be minor
and | will outline the differences between add-onsach section.

Ron Tanner furnished the 16 and 32-bit Power PddesBhat are included on the CD ROM
for alphanumeric paging. However, these DLLs aresapported.

Jonathan Wood furnished the VBASM.DLL for 16-bipéipations. This DLL complements
the WIN95IO.DLL that | have included on the CD RO 32-bit access to 1/0O ports under
Windows 95/98. VBASM.DLL is freeware. Thanks toft€ircuits and Jonathan Wood.

Jim Stewart of JK Microsystems furnished a FlasHliingle Board Computer embedded PC
so that | could develop the Flashlite Control pesgr The quid pro quo was that JK
Microsystems could include the program that | depetl for the Flashlite on their Utilities
disk and on their Web site, to benefit all of thaistomers. Fair all around, | think.

| want to thank Jim Mack of MicroDexterity for tiBuffToHex functions in the
RGUTIL16.DLL and RGUTIL32.DLL files that | have ihaded on the CD ROM (see the
Debugging chapter). MicroDexterity sells the camsting product named Stamina. It
features many add-on functions that can be invéduiao serial communications programs.

Karl Peterson, a friend and fellow MVP, has prodidi®zens of code examples and ideas on
his web site \fww.mvps.org/vh that are valuable. | have incorporated one ordfvhis ideas
in the code in this book.

| want to repeat my appreciation to James ShigldsRuth James at Mabry Software.
Without their support | would not have been ablgublish this book.

Last, | thank all readers of the First, Second, Bhnidd Editions of this book who took the
time to contact me with improvements and correstionwould like to give special thanks to
Ronald Frakes, Terrance Simkin, Will Fookes, arfttele Schnell. | received valuable
comments on the Second Edition from Dan KarmannFaido Varriale. Valuable input
from John Kozee was used in the Fourth Editionarikhyou.

How to Contact Me

Richard Grier

Hard & Software

12962 West Louisiana Avenue
Lakewood, CO 80228

303-986-2179 (voice)
(303)593-9315(fax or voice mail)
Dick_Grier@msn.com (email)
dick grier@hotmail.confemail)
www.hardandsoftware.com
www.hardandsoftware.net

