Create Super Collections in VB

Ever wanted a collection that would allow you to see if a particular key exists without having to trap an error? How about the ability to rename a key without having to first remove the item and then add it back to the collection with the new key? Maybe being able to get the key for a particular item by passing the index would be nice? Or, have you ever needed to be able to use case sensitive key names? All of these are areas where VB’s collection object falls short.

I’m sure you are saying to yourself that all this is already possible if you write your own collection class. However, you then loose the ability to iterate the collection using the For Each…Next syntax unless, of course, you wrap the VB collection object and delegate the method for your class to the _NewEnum method of the VB collection. Unfortunately, this get’s you right back where you started, trying to fix the shortcomings of the VB collection but having to use the VB collection to do it.

In this article I will show you a relatively easily method for implementing the IEnumVARIANT interface in your VB classes. This allows you to give any VB class the ability to use the For Each…Next syntax for iterating through items without having to delegate to VB’s collection. Once you are able to ditch VB’s collection object, the sky is the limit when it comes to the amount of power and flexibility you want to offer in your collections.

First, we need to talk about exactly what goes on under the hood when you use a For Each…Next loop on a collection. When your code hits the “For Each object In objects” line, the NewEnum method of the collection object is called. The NewEnum method then creates an enumeration object that is passed to the For Each…Next enumerator. The enumeration object passes another member of the collection to the enumerator each time the Next method of the IEnumVARIANT interface is called. (IEnumVARIANT interface discription)

Pretty simple so far. So, why can’t you just implement the IEnumVARIANT interface in your collection objects and let the enumerator call the Next method on your class? Good question! There are two reasons you can’t do this with VB straight out of the box.

First, the standard definition of the IEnumVARIANT interface uses syntax that VB cannot implement. This is why you get the dreaded “Not a valid interface for Implements” error if you attempt to implement this interface in a VB class. To get around this, we need to write a typelib that redefines the syntax of the parameters to the methods in the interface. This is easily accomplished using Interface Definition Language (IDL) and the MIDL (Make IDL) compiler that ships with Visual Studio. (How to write an IDL typelib)
Second, you would need to be able to return a value from the Next method of the IEnumVARIANT interface which is declared as a Sub in VB. You might be asking, “How do you return a value from a Sub?” Well, in actuality, VB’s subs are functions. It’s just that VB handles the return value behind the scenes. This is because all method calls in VB are implemented via COM and one of the rules of COM is that all methods must return an HRESULT containing information about the success or failure of the call. Things are beginning to look a little bit on the impossible side, aren’t they? Fortunately, functions in BAS modules allow you direct access to their return value. This still leaves the problem of how to get the code that is enumerating the collection to call a function in a BAS module instead of the method on the interface in your collection class. To do this, we use a routine from Bruce McKinney’s book “Hardcore Visual Basic” that replaces a pointer in a VB class’ Vtable with a pointer to a function in a BAS module. (See “VB classes, what you don’t see.”) So, we simply replace the pointer in the Vtable and the Next method is now delegated to a function in a BAS module.

Now we have a collection class that is a bit hacked up in the sense that one of the methods is actually residing in a BAS module. The main problem with this approach is knowing which instance of the class is associated with the current Next method call since we are now in a totally separate module (if you read “VB classes, what you don’t see.” you may have already figured this out). Fortunately, a COM method call also includes a pointer to the current instance of the class object (in this case an IEnumVARIANT object) which VB normally hides and refrences internally. Unfortuantely, the IEnumVARIANT interface doesn’t have any methods that we can call to return the current item being enumerated. So how the heck do we get a reference to our enumerator class in which the IEnumVARIANT interface is implemented. The answer is, we don’t! Instead, we pull a fast one using some more dirty, underhanded IDL trickery in our typelib. We simply add a method to the interface that allows us to callback into our class. A bit of an underhanded hack but it is what makes this whole scheme work. Here is the IDL for the interface:

interface IEnumVARIANTReDef : IUnknown

{

HRESULT Next([in] LONG cElements,

[in, out] VARIANT* aVariants,

[in] LONG lpcElementsFetched);

HRESULT Skip([in] LONG cElements);

HRESULT Reset();

HRESULT Clone(

[in, out] IEnumVARIANTReDef** lppIEnum);

HRESULT GetItems([in] LONG cElements,

[in, out] VARIANT* aVariants,

[in] LONG lpcElementsFetched,

[in, out] LONG* lRetVal);

};

Notice the GetItems method. If you look at the standard definition of IEnumVARIANT, you will see that it isn’t there! When you implement our redefined interface in your class, you get the extra method call. Now, it’s as simple as calling any VB object to get the data from the correct instance of our enumeration object as evidenced from the call in the IEnumVARIANT_Next function in the BAS module:

this.GetItems nDummy, vTmp, nDummy, lRet

It doesn’t get any easier than that!

